Adaptation of prey and predators between patches.

نویسندگان

  • Wendi Wang
  • Yasuhiro Takeuchi
چکیده

Mathematical models are proposed to simulate migrations of prey and predators between patches. In the absence of predators, it is shown that the adaptation of prey leads to an ideal spatial distribution in the sense that the maximal capacity of each patch is achieved. With the introduction of co-adaptation of predators, it is proved that both prey and predators achieve ideal spatial distributions when the adaptations are weak. Further, it is shown that the adaptation of prey and predators increases the survival probability of predators from the extinction in both patches to the persistence in one patch. It is also demonstrated that there exists a pattern that prey and predators cooperate well through adaptations such that predators are permanent in every patch in the case that predators become extinct in each patch in the absence of adaptations. For strong adaptations, it is proved that the model admits periodic cycles and multiple stability transitions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermal games: frequency-dependent models of thermal adaptation

1. Most models of thermal adaptation ignore biotic interactions, and those that do consider biotic interactions assume that competitors or predators cannot respond to adaptation by the focal species. Nevertheless, real biotic interactions involve responsive entities, which can be more accurately modelled using evolutionary game theory. 2. We present a two-part analysis of a thermal game between...

متن کامل

Space race functional responses.

We derive functional responses under the assumption that predators and prey are engaged in a space race in which prey avoid patches with many predators and predators avoid patches with few or no prey. The resulting functional response models have a simple structure and include functions describing how the emigration of prey and predators depend on interspecific densities. As such, they provide ...

متن کامل

Population-level consequences of heterospecific density-dependent movements in predator-prey systems.

In this paper we elucidate how small-scale movements, such as those associated with searching for food and avoiding predators, affect the stability of predator-prey dynamics. We investigate an individual-based Lotka-Volterra model with density-dependent movement, in which the predator and prey populations live in a very large number of coupled patches. The rates at which individuals leave patch...

متن کامل

Are classical predator-prey models relevant to the real world?

Mathematical models of predator-prey population dynamics are widely used for predicting the effect of predators as biocontrol agents, but the assumptions of the models are more relevant to parasite-host systems. Predator-prey systems, at least in insects, substantially differ from what is assumed by these models. The main differences are: (i) Juveniles and adults have to be considered as two di...

متن کامل

Coevolution of patch selection strategies of predator and prey and the consequences for ecological stability.

In a seminal publication Hassell and May demonstrated that sufficiently uneven spatial distributions can stabilize predator-prey systems. In this article we investigate whether such spatial distributions (of either predators or prey) can be caused by behavior that is favored by natural selection. If selection operates on predators only, evolutionarily stable patch selection strategies (ESSs) wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of theoretical biology

دوره 258 4  شماره 

صفحات  -

تاریخ انتشار 2009